Cobordism Theory and the Signature Theorem

Carmen Rovi

Thursday, 22 September, 2011.

Characteristic classes

Characteristic classes are cohomology classes. Here we are going to consider four important types of characteristic classes, namely:

Characteristic class	Notation	Vector bundle $E \longrightarrow B$
Stiefel-Whitney classes	$w_{i}(\xi) \in H^{i}\left(B(\xi) ; \mathbb{Z}_{2}\right)$	real vector bundle
Chern classes	$c_{i}(\xi) \in H^{2 i}(B(\xi) ; \mathbb{Z})$	complex vector bundle
Pontrjagin classes	$p_{i}(\xi) \in H^{4 i}(B(\xi) ; \mathbb{Z})$	real vector bundle
Euler class	$e(\xi) \in H^{n}(B(\xi) ; \mathbb{Z})$	Oriented, $n-$ dim, real vector bundle

Characteristic classes

What is a characteristic class?

Every cohomology class $c \in H^{*}(B G ; R)$ determines a characteristic class of principle G-bundles over the base space M. Infinite Grassmann manifolds $\operatorname{Gr}(n, \infty)$ are classifying spaces for linear groups.

We can also write $f_{\xi}^{*}\left(\gamma_{n}\right)=\xi$. So if $c\left(\gamma_{n}\right) \in H^{*}\left(B O_{n} ; R\right)$, then this cohomology class can be pulled back by the map f_{ξ}^{*} so that,

Characteristic classes

What is a characteristic class?

Every cohomology class $c \in H^{*}(B G ; R)$ determines a characteristic class of principle G-bundles over the base space M. Infinite Grassmann manifolds $\operatorname{Gr}(n, \infty)$ are classifying spaces for linear groups.

If $f: \xi \longrightarrow \gamma_{n}$ is any bundle map, then this map induces a unique homotopy class of maps of base spaces.

Characteristic classes

What is a characteristic class?

Every cohomology class $c \in H^{*}(B G ; R)$ determines a characteristic class of principle G-bundles over the base space M. Infinite Grassmann manifolds $\operatorname{Gr}(n, \infty)$ are classifying spaces for linear groups.

If $f: \xi \longrightarrow \gamma_{n}$ is any bundle map, then this map induces a unique homotopy class of maps of base spaces.

We can also write $f_{\xi}^{*}\left(\gamma_{n}\right)=\xi$. So if $c\left(\gamma_{n}\right) \in H^{*}\left(B O_{n} ; R\right)$, then this cohomology class can be pulled back by the map f_{ξ}^{*} so that,

$$
f_{\xi}^{*} c\left(\gamma_{n}\right)=c\left(f_{\xi}^{*}\left(\gamma_{n}\right)\right)=c(\xi) \in H^{*}(M ; R)
$$

Stiefel-Whitney classes

Axioms

(a) Existence axiom: For each real vector bundle ξ there exists a sequence of Stiefel-Whitney cohomology classes

$$
w_{i}(\xi) \in H^{i}\left(B(\xi) ; \mathbb{Z}_{2}\right), \text { where } i=0,1, \ldots
$$

For $i=0$, the Stiefel-Whitney class is the unit element in $H^{0}\left(B(\xi) ; \mathbb{Z}_{2}\right)$.
(b) Naturality axiom: Let $f^{*}(\xi)$ be a pullback bundle of the bundle ξ, then,

$$
w_{i}\left(f^{*}(\xi)\right)=f^{*}\left(w_{i}(\xi)\right)
$$

Stiefel-Whitney classes

Axioms

(c) The Whitney product axiom: Let ξ and ξ^{\prime} be two different vector bundles over the same base space B, then,

$$
\begin{gathered}
w_{1}\left(\xi \oplus \xi^{\prime}\right)=w_{1}(\xi)+w_{1}\left(\xi^{\prime}\right), \\
w_{2}\left(\xi \oplus \xi^{\prime}\right)=w_{2}(\xi)+w_{1}(\xi) w_{1}\left(\xi^{\prime}\right)+w_{2}\left(\xi^{\prime}\right),
\end{gathered}
$$

$$
\text { and, in general, } w_{k}\left(\xi \oplus \xi^{\prime}\right)=\sum_{i=0}^{k} w_{i}(\xi) \cup w_{k-i}\left(\xi^{\prime}\right)
$$

(d) $w_{i}(\xi)$ as a generator of $H^{i}\left(\mathbb{R} P^{\infty} ; \mathbb{Z}_{2}\right)$: For the line bundle $E \rightarrow \mathbb{R} P^{\infty}, w_{i}(\xi)$ is a generator of $H^{i}\left(\mathbb{R} P^{\infty} ; \mathbb{Z}_{2}\right)$.

Stiefel-Whitney classes

Axioms

The cohomology ring $H^{*}\left(B O_{n} ; \mathbb{Z} / 2\right)$ is,

$$
H^{*}\left(B O_{n} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\left[w_{1}\left(\gamma^{n}\right), \ldots, w_{n}\left(\gamma^{n}\right)\right] .
$$

Note that there are no polynomial relations between the generating Stiefel-Whitney classes $w_{1}\left(\gamma^{n}\right), \ldots, w_{n}\left(\gamma^{n}\right)$.

The cohomology ring $H^{*}\left(B S O_{n} ; \mathbb{Z} / 2\right)$ of is,

There are no polynomial relations between the Stiefel-Whitney classes $w_{1}\left(\tilde{\gamma}^{n}\right), \ldots, w_{n}\left(\tilde{\gamma}^{n}\right)$.

Stiefel-Whitney classes

Axioms

The cohomology ring $H^{*}\left(B O_{n} ; \mathbb{Z} / 2\right)$ is,

$$
H^{*}\left(B O_{n} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\left[w_{1}\left(\gamma^{n}\right), \ldots, w_{n}\left(\gamma^{n}\right)\right] .
$$

Note that there are no polynomial relations between the generating Stiefel-Whitney classes $w_{1}\left(\gamma^{n}\right), \ldots, w_{n}\left(\gamma^{n}\right)$.

The cohomology ring $H^{*}\left(B S O_{n} ; \mathbb{Z} / 2\right)$ of is,

$$
H^{*}\left(B S O_{n} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\left[w_{1}\left(\tilde{\gamma}^{n}\right), \ldots, w_{n}\left(\tilde{\gamma}^{n}\right)\right]
$$

There are no polynomial relations between the Stiefel-Whitney classes $w_{1}\left(\tilde{\gamma}^{n}\right), \ldots, w_{n}\left(\tilde{\gamma}^{n}\right)$.

Stiefel-Whitney numbers

Definition

Stiefel-Whitney numbers Let $I=\left(i_{1}, \ldots, i_{r}\right)$ be any partition of n, and τ be the tangent bundle of M^{n}. Then the Stiefel-Whitney number of M associated with the monomial $w_{i_{1}}(\tau) \ldots w_{1_{r}}(\tau)$ is given by,

$$
\left\langle w_{i_{1}}(\tau) \ldots w_{i_{r}}(\tau), \mu_{M}\right\rangle=w_{i_{1}} \ldots w_{i_{r}}\left[M^{n}\right] \in \mathbb{Z}_{2}
$$

Stiefel-Whitney numbers and cobordism

- If M^{n} is the boundary of an $(n+1)$-dimensional manifold, then the Stiefel-Whitney numbers of M are all zero.
- Conversely, if all the Stiefel-Whitney numbers of a manifold are zero, then M is a boundary.

Let M and N be two closed, smooth, n-dimensional manifolds, then M and N belong to the same cobordism class if and only if their Stiefel-Whitney numbers are equal.

Stiefel-Whitney numbers and cobordism

- If M^{n} is the boundary of an $(n+1)$-dimensional manifold, then the Stiefel-Whitney numbers of M are all zero.
- Conversely, if all the Stiefel-Whitney numbers of a manifold are zero, then M is a boundary.

Let M and N be two closed, smooth, n-dimensional manifolds, then M and N belong to the same cobordism class if and only if their Stiefel-Whitney numbers are equal.

Pontryagin classes

Pontryagin classes

Pontryagin classes are cohomology classes: $p_{i}(\xi) \in H^{4 i}(B ; \mathbb{Z})$.
The i-th Pontryagin class $p_{i}(\xi) \in H^{4 i}(B ; \mathbb{Z})$ is defined in terms of Chern classes as

$$
p_{i}(\xi)=(-1)^{i} c_{2 i}(\xi \otimes \mathbb{C}) .
$$

The total Pontryagin class is defined as,

This class is a unit in the cohomology ring $H^{*}(B ; \mathbb{Z})$

Pontryagin classes

Pontryagin classes

Pontryagin classes are cohomology classes: $p_{i}(\xi) \in H^{4 i}(B ; \mathbb{Z})$.
The i-th Pontryagin class $p_{i}(\xi) \in H^{4 i}(B ; \mathbb{Z})$ is defined in terms of Chern classes as

$$
p_{i}(\xi)=(-1)^{i} c_{2 i}(\xi \otimes \mathbb{C}) .
$$

The total Pontryagin class is defined as,

$$
p(\xi)=1+p_{1}(\xi)+\cdots+p_{[n / 2]}(\xi) .
$$

This class is a unit in the cohomology ring $H^{*}(B ; \mathbb{Z})$.

Pontryagin classes

Properties

Pontryagin classes satisfy certain properties:
(a) The naturality property is satisfied. That is, if $f^{*}(\xi)$ be a pullback bundle of the bundle ξ, then,

$$
p_{i}\left(f^{*}(\xi)\right)=f^{*}\left(p_{i}(\xi)\right)
$$

(b) If ϵ^{n} is a trivial n-plane bundle, then $p\left(\xi \oplus \epsilon^{n}\right)=p(\xi)$.
(c) A product formula for $p(\xi \oplus \nu)$ in the case of Pontryagin classes is,

$$
p(\xi \oplus \nu) \equiv p(\xi) p(\nu) \bmod (\text { elements of order 2), }
$$

or equivalently, $2 p(\xi \oplus \nu)=2 p(\xi) p(\nu)$.
(d) Let ξ be a $2 n$-plane vector bundle, then

$$
p_{n}(\xi)=e^{2}(\xi)
$$

Pontryagin numbers

Pontryagin numbers

Let $M^{4 n}$ be a smooth, compact, oriented manifold with tangent bundle denoted by $\tau^{4 n}$, and let $I=i_{1}, \ldots, i_{r}$ be a partition of n , then the I-th Pontryagin number is an integer defined as

$$
p_{l}\left[M^{4 n}\right]=p_{i_{1}} \ldots p_{i_{r}}\left[M^{4 n}\right]=\left\langle p_{i_{1}}\left(\tau^{4 n}\right) \ldots p_{i_{r}}\left(\tau^{4 n}\right), \mu_{4 n}\right\rangle .
$$

where $\mu_{4 n} \in H^{4 n}\left(M^{4 n} ; \mathbb{Z}\right)$ is the fundamental or orientation class of the manifold $M^{4 n}$.

Pontryagin numbers

Pontryagin numbers projective space

The Pontryagin numbers of complex projective spaces $\mathbb{C} P^{2 n}$. The complex manifold $\mathbb{C} P^{2 n}$ has real dimension $4 n$, so if i_{1}, \ldots, i_{r} is a partition of n, then

$$
p_{i_{1}} \ldots p_{i_{r}}\left[\mathbb{C} P^{2 n}\right]=\binom{2 n+1}{i_{1}} \ldots\binom{2 n+1}{i_{r}} .
$$

A relevant issue in the context of oriented cobordism is to consider how Pontryagin classes and Pontryagin numbers may change when the orientation of the manifold is reversed.

Pontryagin classes and diffeomorphisms

If we reverse the orientation of a manifold $M^{4 n}$:

- Pontryagin classes remain unchanged,
- Pontryagin numbers change sign.

As a consequence if some Pontryagin number is non-zero then $M^{4 n}$ does not posses any orientation reversing diffeomorphism.

does not have any orientation reversing diffeomorphism.

Pontryagin classes and diffeomorphisms

If we reverse the orientation of a manifold $M^{4 n}$:

- Pontryagin classes remain unchanged,
- Pontryagin numbers change sign.

As a consequence if some Pontryagin number is non-zero then $M^{4 n}$ does not posses any orientation reversing diffeomorphism.

The Pontryagin numbers of $\mathbb{C} P^{2 n}$ are non-zero. Consequently, $\mathbb{C} P^{2 n}$ does not have any orientation reversing diffeomorphism.

Pontryangin numbers and Cobordism

If some Pontryagin number of a manifold $M^{4 n}$ is non-zero, then $M^{4 n}$ is not the boundary of a smooth, compact oriented $(4 n+1)$-dimensional manifold.

The Pontryagin numbers of $\mathbb{C} P^{2 n}$ are non-zero, so that $\mathbb{C} P^{2 n}$ cannot be an oriented boundary

Consequences

> The oriented cobordism group Ω_{n} is finite for $n \neq 4 k$, and is a finitely generated group with rank equal to $p(k)$, the number of partitions of k, when $n=4 k$.

Pontryangin numbers and Cobordism

If some Pontryagin number of a manifold $M^{4 n}$ is non-zero, then $M^{4 n}$ is not the boundary of a smooth, compact oriented ($4 n+1$)-dimensional manifold.

The Pontryagin numbers of $\mathbb{C} P^{2 n}$ are non-zero, so that $\mathbb{C} P^{2 n}$ cannot be an oriented boundary

Consequences:
The oriented cobordism group Ω_{n} is finite for $n \neq 4 k$, and is a finitely generated group with rank equal to $p(k)$, the number of partitions of k, when $n=4 k$.

The tensor product $\Omega_{*} \otimes \mathbb{Q}$ is a polynomial algebra over \mathbb{Q} with independent generators $\mathbb{C} P^{2}, \mathbb{C} P^{4}, \ldots$, .

Computation of Cobordism groups

n	\mathfrak{N}_{n}	$\Omega_{n} \otimes \mathbb{Q}$	Ω_{n}
0	\mathbb{Z}_{2}	\mathbb{Q}	\mathbb{Z}
1	0	0	0
2	\mathbb{Z}_{2}	0	0
3	0	0	0
4	$\left(\mathbb{Z}_{2}\right)^{2}$	\mathbb{Q}	\mathbb{Z}
5	\mathbb{Z}_{2}	0	\mathbb{Z}_{2}
6	$\left(\mathbb{Z}_{2}\right)^{3}$	0	0
7	\mathbb{Z}_{2}	0	0
8	$\left(\mathbb{Z}_{2}\right)^{5}$	$(\mathbb{Q})^{2}$	$(\mathbb{Z})^{2}$
9	$\left(\mathbb{Z}_{2}\right)^{3}$	0	$\left(\mathbb{Z}_{2}\right)^{2}$
10	$\left(\mathbb{Z}_{2}\right)^{8}$	0	\mathbb{Z}_{2}
11	$\left(\mathbb{Z}_{2}\right)^{4}$	0	\mathbb{Z}_{2}
12	$\left(\mathbb{Z}_{2}\right)^{7}$	$(\mathbb{Q})^{3}$	$\left(\mathbb{Z}_{2}\right)^{3}$
\vdots	\vdots	\vdots	\vdots

Break!

Hirzebruch Signature Theorem

Multiplicative Sequence

Let \mathcal{A} be a commutative ring consisting of all formal sums $a_{0}+a_{1}+a_{2}+\ldots$.

Consider a sequence of polynomials denoted by

$$
K_{1}\left(x_{1}\right), K_{2}\left(x_{1}, x_{2}\right), K_{3}\left(x_{1}, x_{2}, x_{3}\right), \ldots
$$

Each of the x_{i} is assigned degree $i \Longrightarrow K_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a polynomial homogeneous of degree.

Hirzebruch Signature Theorem

For each element in the ring \mathcal{A} with leading term 1, i.e., $a=1+a_{1}+a_{2}+\cdots \in \mathcal{A}$, we define $K(a) \in \mathcal{A}$ by,

$$
K(a)=1+K_{1}\left(a_{1}\right)+K_{2}\left(a_{1}, a_{2}\right)+K_{3}\left(a_{1}, a_{2}, a_{3}\right)+\ldots
$$

Definition

The polynomials K_{n} form a multiplicative sequence if for $a, b \in \mathcal{A}$ with leading term 1 , the relation

$$
K(a b)=K(a) K(b),
$$

is satisfied.

Hirzebruch Signature Theorem

Multiplicative sequences can be used to define the relations between characteristic classes.

```
These sequences are in one-one relation to certain formal power
series.
power series and multiplicative sequence
Let }f(t)=1+\mp@subsup{\lambda}{1}{}t+\mp@subsup{\lambda}{2}{}\mp@subsup{t}{}{2}+\ldots\mathrm{ be a formal power series with
coefficients in \mathbb{Q}\mathrm{ , then there exists one multiplicative sequence K}\mp@subsup{K}{n}{}\mathrm{ such}
that the coefficient of }\mp@subsup{x}{1}{n}\mathrm{ in each polynomial }\mp@subsup{K}{n}{}(\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{n}{})\mathrm{ is }\mp@subsup{\lambda}{n}{}\mathrm{ .
Note that this is the same as saying that K(1+i)=f(t).
```


Hirzebruch Signature Theorem

Multiplicative sequences can be used to define the relations between characteristic classes.

These sequences are in one-one relation to certain formal power series.
power series and multiplicative sequence
Let $f(t)=1+\lambda_{1} t+\lambda_{2} t^{2}+\ldots$ be a formal power series with
coefficients in \mathbb{Q}, then there exists one multiplicative sequence K_{n} such that the coefficient of x_{1}^{n} in each polynomial $K_{n}\left(x_{1}\right.$

Note that this is the same as saying that $K(1+t)=f(t)$.

Hirzebruch Signature Theorem

Multiplicative sequences can be used to define the relations between characteristic classes.

These sequences are in one-one relation to certain formal power series.

power series and multiplicative sequence

Let $f(t)=1+\lambda_{1} t+\lambda_{2} t^{2}+\ldots$ be a formal power series with coefficients in \mathbb{Q}, then there exists one multiplicative sequence K_{n} such that the coefficient of x_{1}^{n} in each polynomial $K_{n}\left(x_{1}, \ldots, x_{n}\right)$ is λ_{n}.

Note that this is the same as saying that $K(1+t)=f(t)$.

Hirzebruch Signature Theorem

 What is a Genus?
Genus

Let $K_{n}\left(x_{1}, \ldots, x_{n}\right)$ be a multiplicative sequence, then we define the \mathbf{K} - genus, $K\left[M^{\eta}\right]$, as follows,
(i) If $n \neq 4 k$ then $K\left[M^{\eta}\right]=0$,
(ii) If $n=4 k$, then $K_{n}\left[M^{4 k}\right]=\left\langle K_{n}\left(p_{1}, \ldots, p_{n}\right),\left[M^{4 k}\right]\right\rangle \in \mathbb{Q}$.
where p_{i} denotes the i th-Pontryagin class.

Hirzebruch Signature Theorem

Towards the definition of the L - genus

- Consider the formal power series

$$
\begin{aligned}
f(t) & =\sqrt{t} / \tanh \sqrt{t} \\
& =1+\frac{1}{3} t-\frac{1}{45} t^{2}+\frac{1}{945} t^{3}-\cdots+(-1)^{k-1} 2^{2 k} B_{k} t^{k} /(2 k)!+\ldots
\end{aligned}
$$

where B_{k} is the k-th Bernoulli number.

- Also consider the multiplicative sequence such that the coefficient of p_{1}^{n} in each polynomial $L_{n}\left(p_{1}, \ldots, p_{n}\right)$ is given by the coefficient of t^{n} in $f(t)=\sqrt{t} / \tanh \sqrt{t}$.

Hirzebruch Signature Theorem

The L-Genus

The L - genus
The \mathbf{L} - genus, $L\left[M^{\eta}\right]$ is defined as
(i) If $n \neq 4 k$ then $L\left[M^{n}\right]=0$,
(ii) If $n=4 k$, then $L_{n}\left[M^{4 k}\right]=\left\langle L_{n}\left(p_{1}, \ldots, p_{n}\right),\left[M^{4 k}\right]\right\rangle \in \mathbb{Q}$.

Hirzebruch Signature Theorem

Following the above definition, we can write several L-polynomials as,

$$
\begin{aligned}
L_{1}\left(p_{1}\right) & =\frac{1}{3} p_{1} \\
L_{2}\left(p_{1}, p_{2}\right) & =\frac{1}{45}\left(7 p_{2}-p_{1}^{2}\right), \\
L_{3}\left(p_{1}, p_{2}, p_{3}\right) & =\frac{1}{945}\left(62 p_{3}-13 p_{1} p_{2}+2 p_{3}\right), \\
\vdots & =
\end{aligned}
$$

Hirzebruch Signature Theorem

Definition

The Todd-genus is the genus which has multiplicative seguences corresponding to the power series $f(t)=\frac{t}{1-e^{-t}}$.

Definition

The â genus is the genus which has multiplicative seguences corresponding to the power series $f(t)=\frac{\frac{1}{2} \sqrt{x}}{\sinh \sqrt{x}}$.

Hirzebruch Signature Theorem

Properties of Genera

Any genus K gives rise to a ring homomorphism

Moreover this also provides an algebra homomorphism from $\Omega_{*} \otimes \mathbb{Q}$ to \mathbb{Q}.

If M and N are smooth, compact oriented manifolds, then
$K[M \times N]=K[M] K[N]$ and $K[M+N]=K[M]+K[N]$.

Hirzebruch Signature Theorem

 Properties of GeneraAny genus K gives rise to a ring homomorphism

Moreover this also provides an algebra homomorphism from $\Omega_{*} \otimes \mathbb{Q}$ to \mathbb{Q}.

If M and N are smooth, compact oriented manifolds, then

$$
K[M \times N]=K[M] K[N] \quad \text { and } \quad K[M+N]=K[M]+K[N] .
$$

Hirzebruch Signature Theorem

Defining the Signature

The Signature

Consider a compact, oriented manifold M of dimension n. The signature $\sigma(M)$ is defined as follows,
(i) If $n \neq 4 k$, then $\sigma(M)=0$,
(ii) If $n=4 k$, then $\sigma(M)$ is the signature of the intersection form

$$
\sigma(M)=\sigma\left(H^{2 k}(M ; \mathbb{R}), \lambda\right)
$$

Hirzebruch Signature Theorem

Defining the Signature

The Signature

Consider a compact, oriented manifold M of dimension n. The signature $\sigma(M)$ is defined as follows,
(i) If $n \neq 4 k$, then $\sigma(M)=0$,
(ii) If $n=4 k$, then $\sigma(M)$ is the signature of the intersection form

$$
\sigma(M)=\sigma\left(H^{2 k}(M ; \mathbb{R}), \lambda\right)
$$

...but what is an intersection form?

Hirzebruch Signature Theorem

Symmetric forms

A symmetric form (K, λ) over \mathbb{R} is a finite-dimensional real vector space K together with a bilinear pairing

$$
\begin{array}{llll}
\lambda: & K \times K & \longrightarrow \mathbb{R} \\
& (x, y) & \longmapsto \lambda(x, y)
\end{array}
$$

The intersection form of a closed oriented $4 k$-dimensional manifold $M^{4 k}$ is the nonsingular symmetric form over $\mathbb{R},\left(H^{2 k}(M ; \mathbb{R}), \lambda\right)$ with

$$
\begin{array}{ccccc}
\left.\lambda: \begin{array}{cc}
H^{2 k}(M ; \mathbb{R}) & \times \\
H^{2 k}(M ; \mathbb{R}) & \longrightarrow \\
\\
(x & ,
\end{array} y\right) & \longmapsto \lambda(x, y)=\langle x \cup y,[M]\rangle
\end{array}
$$

Hirzebruch Signature Theorem

Defining the Signature

Consider a compact, oriented manifold M of dimension n. The signature $\sigma(M)$ is defined as follows,
(i) If $n \neq 4 k$, then $\sigma(M)=0$
(ii) If $n=4 k$, then $\sigma(M)$ is the signature of the intersection form

$$
\sigma(M)=\sigma\left(H^{2 k}(M ; \mathbb{R}), \lambda\right)
$$

- Choose an appropriate basis a_{1}, \ldots, a_{r} for $H^{2 r}\left(M^{4 k} ; \mathbb{Q}\right)$ so that the matrix with entries $\left\langle a_{i} \cup a_{j},[M]\right\rangle$ is diagonal,
- then $\sigma(M)$ can be found by subtracting the number of negative entries from the number of positive entries.

Hirzebruch Signature Theorem Properties of the Signature

Properties of the Signature

The signature satisfies the following properties,
(i) $\sigma(M+N)=\sigma(M)+\sigma(N)$,
(ii) $\sigma(M \times N)=\sigma(M) \sigma(N)$,
(iii) If M is an (oriented) boundary, this implies that $\sigma(M)=0$.

Hirzebruch Signature Theorem

Properties of the Signature

Let M and N be two closed, oriented, cobordant $4 k$-dimensional manifolds and W be an oriented cobordism between them. Then the signature is an oriented cobordism invariant, where,

$$
\sigma(M)=\sigma(N)
$$

The signature defines homomorphisms on the $4 k$-dimensional oriented cobordism groups,

[^0]
Hirzebruch Signature Theorem
 Properties of the Signature

Let M and N be two closed, oriented, cobordant $4 k$-dimensional manifolds and W be an oriented cobordism between them. Then the signature is an oriented cobordism invariant, where,

$$
\sigma(M)=\sigma(N)
$$

The signature defines homomorphisms on the $4 k$-dimensional oriented cobordism groups,

$$
\begin{aligned}
\sigma: & \Omega_{4 k} \\
& \longrightarrow \mathbb{Z} \\
& {[M] }
\end{aligned} \longmapsto \sigma(M) .
$$

The signature also induces an algebra homomorphism $\Omega_{*} \otimes \mathbb{Q}$ to \mathbb{Q}.

Hirzebruch Signature Theorem

The Signature Theorem
Recall the power series,

$$
\begin{aligned}
f(t) & =\sqrt{t} / \tanh \sqrt{t} \\
& =1+\frac{1}{3} t-\frac{1}{45} t^{2}+\frac{1}{945} t^{3}-\cdots+(-1)^{k-1} 2^{2 k} B_{k} t^{k} /(2 k)!+\ldots
\end{aligned}
$$

where B_{k} is the k-th Bernoulli number.

Let $L_{k}\left(p_{1}, \ldots, p_{k}\right)$ be the multiplicative sequence of polynomials belonging to this power series.

The Signature Theorem
The signature is equal to the L-genus $L\left[M^{4 k}\right]=\left\langle L_{k}\left(p_{1}\right.\right.$

Hirzebruch Signature Theorem

The Signature Theorem
Recall the power series,

$$
\begin{aligned}
f(t) & =\sqrt{t} / \tanh \sqrt{t} \\
& =1+\frac{1}{3} t-\frac{1}{45} t^{2}+\frac{1}{945} t^{3}-\cdots+(-1)^{k-1} 2^{2 k} B_{k} t^{k} /(2 k)!+\ldots
\end{aligned}
$$

where B_{k} is the k-th Bernoulli number.
Let $L_{k}\left(p_{1}, \ldots, p_{k}\right)$ be the multiplicative sequence of polynomials belonging to this power series.

The Signature Theorem

The signature is equal to the L-genus $L\left[M^{4 k}\right]=\left\langle L_{k}\left(p_{1}, \ldots, p_{k}\right),\left[M^{4 k}\right]\right\rangle$,

$$
\sigma\left(M^{4 k}\right)=L\left[M^{4 k}\right]
$$

Hirzebruch Signature Theorem

The Signature Theorem

The Signature Theorem

The signature is equal to the L-genus $L\left[M^{4 k}\right]=\left\langle L_{k}\left(p_{1}, \ldots, p_{k}\right),\left[M^{4 k}\right]\right\rangle$,

$$
\sigma\left(M^{4 k}\right)=L\left[M^{4 k}\right] .
$$

Key idea for the proof:

- $M \mapsto L(M)$ and $M \mapsto \sigma(M)$ give rise to algebra homomorphisms $\Omega_{*} \otimes \mathbb{Q} \rightarrow \mathbb{Q}$,
- We only need to check that it holds on generators of $\Omega_{*} \otimes \mathbb{Q}$.

$$
\begin{equation*}
\sigma\left(\mathbb{C} P^{2 k}\right)=L\left[\mathbb{C} P^{2 k}\right] \tag{1}
\end{equation*}
$$

Exercices

Determine the signature of $\mathbb{C} P^{n} \times \mathbb{C} P^{n}$ for any $n \in \mathbb{N}$
Show that $\sigma(M \# N)=\sigma(M) \# \sigma(N)$

Determine whether the 8 manifolds $\mathbb{C} P^{2} \times \mathbb{C} P^{2}$ and $\mathbb{C} P^{4}$ are cobordant.

Show that $\mathbb{C} P^{n} \times \mathbb{C} P^{m}$ and $\mathbb{C} P^{n+m}$ are linearly independent elements of the corresponding oriented cobordism group, when n and m are even.

Thank you for listening!

[^0]: The signature also induces an algebra homomorphism $\Omega_{*} \otimes \mathbb{Q}$ to \mathbb{Q}

