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Characteristic classes

Characteristic classes are cohomology classes. Here we are going to
consider four important types of characteristic classes, namely:

Characteristic class Notation Vector bundle E −→ B

Stiefel-Whitney classes wi (ξ) ∈ H i (B(ξ); Z2) real vector bundle

Chern classes ci (ξ) ∈ H2i (B(ξ); Z) complex vector bundle

Pontrjagin classes pi (ξ) ∈ H4i (B(ξ); Z) real vector bundle

Euler class e(ξ) ∈ Hn(B(ξ); Z) Oriented, n − dim, real vector bundle
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Characteristic classes
What is a characteristic class?

Every cohomology class c ∈ H∗(BG; R) determines a characteristic
class of principle G-bundles over the base space M.
Infinite Grassmann manifolds Gr(n,∞) are classifying spaces for
linear groups.

If f : ξ −→ γn is any bundle map, then this map induces a unique
homotopy class of maps of base spaces.

We can also write f ∗ξ (γn) = ξ. So if c(γn) ∈ H∗(BOn; R), then this
cohomology class can be pulled back by the map f ∗ξ so that,

f ∗ξ c(γn) = c(f ∗ξ (γn)) = c(ξ) ∈ H∗(M; R).
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Stiefel-Whitney classes
Axioms

(a) Existence axiom: For each real vector bundle ξ there exists a
sequence of Stiefel-Whitney cohomology classes

wi(ξ) ∈ H i(B(ξ);Z2),where i = 0,1, . . .

For i = 0, the Stiefel-Whitney class is the unit element in
H0(B(ξ);Z2).

(b) Naturality axiom: Let f ∗(ξ) be a pullback bundle of the bundle ξ,
then,

wi(f ∗(ξ)) = f ∗(wi(ξ)).
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Stiefel-Whitney classes
Axioms

(c) The Whitney product axiom: Let ξ and ξ′ be two different vector
bundles over the same base space B, then,

w1(ξ ⊕ ξ′) = w1(ξ) + w1(ξ′),

w2(ξ ⊕ ξ′) = w2(ξ) + w1(ξ)w1(ξ′) + w2(ξ′),

and, in general, wk (ξ ⊕ ξ′) =
k∑

i=0

wi(ξ) ∪ wk−i(ξ
′).

(d) wi(ξ) as a generator of H i(RP∞;Z2): For the line bundle
E → RP∞, wi(ξ) is a generator of H i(RP∞;Z2).
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Stiefel-Whitney classes
Axioms

The cohomology ring H∗(BOn;Z/2) is,

H∗(BOn;Z2) = Z2[w1(γn), . . . ,wn(γn)].

Note that there are no polynomial relations between the generating
Stiefel-Whitney classes w1(γn), . . . ,wn(γn).

The cohomology ring H∗(BSOn;Z/2) of is,

H∗(BSOn;Z2) = Z2[w1(γ̃n), . . . ,wn(γ̃n)].

There are no polynomial relations between the Stiefel-Whitney classes
w1(γ̃n), . . . ,wn(γ̃n).
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Stiefel-Whitney numbers

Definition
Stiefel-Whitney numbers Let I = (i1, . . . , ir ) be any partition of n, and τ
be the tangent bundle of Mn. Then the Stiefel-Whitney number of M
associated with the monomial wi1(τ) . . .w1r (τ) is given by,〈

wi1(τ) . . .wir (τ), µM
〉

= wi1 . . .wir [M
n] ∈ Z2.
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Stiefel-Whitney numbers and cobordism

If Mn is the boundary of an (n + 1)-dimensional manifold, then the
Stiefel-Whitney numbers of M are all zero.
Conversely, if all the Stiefel-Whitney numbers of a manifold are
zero, then M is a boundary.

Let M and N be two closed, smooth, n-dimensional manifolds, then M
and N belong to the same cobordism class if and only if their
Stiefel-Whitney numbers are equal.
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Pontryagin classes

Pontryagin classes

Pontryagin classes are cohomology classes: pi(ξ) ∈ H4i(B;Z).

The i-th Pontryagin class pi(ξ) ∈ H4i(B;Z) is defined in terms of Chern
classes as

pi(ξ) = (−1)ic2i(ξ ⊗ C).

The total Pontryagin class is defined as,

p(ξ) = 1 + p1(ξ) + · · ·+ p[n/2](ξ).

This class is a unit in the cohomology ring H∗(B;Z).
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Pontryagin classes
Properties

Pontryagin classes satisfy certain properties:

(a) The naturality property is satisfied. That is, if f ∗(ξ) be a pullback
bundle of the bundle ξ, then,

pi(f ∗(ξ)) = f ∗(pi(ξ)).

(b) If εn is a trivial n-plane bundle, then p(ξ ⊕ εn) = p(ξ).
(c) A product formula for p(ξ ⊕ ν) in the case of Pontryagin classes is,

p(ξ ⊕ ν) ≡ p(ξ)p(ν) mod (elements of order 2),

or equivalently, 2p(ξ ⊕ ν) = 2p(ξ)p(ν).
(d) Let ξ be a 2n-plane vector bundle, then

pn(ξ) = e2(ξ).
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Pontryagin numbers

Pontryagin numbers

Let M4n be a smooth, compact, oriented manifold with tangent bundle
denoted by τ4n, and let I = i1, . . . , ir be a partition of n, then the I-th
Pontryagin number is an integer defined as

pI [M4n] = pi1 . . . pir [M
4n] =

〈
pi1(τ4n) . . . pir (τ

4n), µ4n

〉
.

where µ4n ∈ H4n(M4n;Z) is the fundamental or orientation class of the
manifold M4n.
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Pontryagin numbers

Pontryagin numbers projective space

The Pontryagin numbers of complex projective spaces CP2n. The
complex manifold CP2n has real dimension 4n, so if i1, . . . , ir is a
partition of n, then

pi1 . . . pir [CP2n] =

(
2n + 1

i1

)
. . .

(
2n + 1

ir

)
.

A relevant issue in the context of oriented cobordism is to consider
how Pontryagin classes and Pontryagin numbers may change when
the orientation of the manifold is reversed.
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Pontryagin classes and diffeomorphisms

If we reverse the orientation of a manifold M4n:

Pontryagin classes remain unchanged,
Pontryagin numbers change sign.

As a consequence if some Pontryagin number is non-zero then M4n

does not posses any orientation reversing diffeomorphism.

The Pontryagin numbers of CP2n are non-zero. Consequently, CP2n

does not have any orientation reversing diffeomorphism.
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Pontryangin numbers and Cobordism

If some Pontryagin number of a manifold M4n is non-zero, then M4n is
not the boundary of a smooth, compact oriented (4n + 1)-dimensional
manifold.

The Pontryagin numbers of CP2n are non-zero, so that CP2n cannot be
an oriented boundary

Consequences :

The oriented cobordism group Ωn is finite for n 6= 4k , and is a finitely
generated group with rank equal to p(k), the number of partitions of k,
when n = 4k.

The tensor product Ω∗ ⊗Q is a polynomial algebra over Q with
independent generators CP2,CP4, . . . , .
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Computation of Cobordism groups

n Nn Ωn ⊗Q Ωn

0 Z2 Q Z
1 0 0 0
2 Z2 0 0
3 0 0 0
4 (Z2)2 Q Z
5 Z2 0 Z2

6 (Z2)3 0 0
7 Z2 0 0
8 (Z2)5 (Q)2 (Z)2

9 (Z2)3 0 (Z2)2

10 (Z2)8 0 Z2

11 (Z2)4 0 Z2

12 (Z2)7 (Q)3 (Z2)3

...
...

...
...
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Break!
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Hirzebruch Signature Theorem
Multiplicative Sequence

Let A be a commutative ring consisting of all formal sums
a0 + a1 + a2 + . . . .

Consider a sequence of polynomials denoted by

K1(x1),K2(x1, x2),K3(x1, x2, x3), . . . ,

Each of the xi is assigned degree i =⇒ Kn(x1, x2, . . . , xn) is a
polynomial homogeneous of degree.
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Hirzebruch Signature Theorem

For each element in the ring A with leading term 1, i.e.,
a = 1 + a1 + a2 + · · · ∈ A, we define K (a) ∈ A by,

K (a) = 1 + K1(a1) + K2(a1,a2) + K3(a1,a2,a3) + . . .

Definition
The polynomials Kn form a multiplicative sequence if for a,b ∈ A
with leading term 1, the relation

K (ab) = K (a)K (b),

is satisfied.
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Hirzebruch Signature Theorem

Multiplicative sequences can be used to define the relations between
characteristic classes.

These sequences are in one-one relation to certain formal power
series.

power series and multiplicative sequence

Let f (t) = 1 + λ1t + λ2t2 + . . . be a formal power series with
coefficients in Q, then there exists one multiplicative sequence Kn such
that the coefficient of xn

1 in each polynomial Kn(x1, . . . , xn) is λn.

Note that this is the same as saying that K (1 + t) = f (t).
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Hirzebruch Signature Theorem
What is a Genus?

Genus

Let Kn(x1, . . . , xn) be a multiplicative sequence, then we define the
K− genus, K [Mn], as follows,

(i) If n 6= 4k then K [Mn] = 0,
(ii) If n = 4k , then Kn[M4k ] =

〈
Kn(p1, . . . ,pn), [M4k ]

〉
∈ Q.

where pi denotes the i th-Pontryagin class.
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Hirzebruch Signature Theorem

Towards the definition of the L− genus
Consider the formal power series

f (t) =
√

t/tanh
√

t

= 1 + 1
3 t − 1

45 t2 + 1
945 t3 − · · ·+ (−1)k−122kBk tk/(2k)! + . . . ,

where Bk is the k -th Bernoulli number.
Also consider the multiplicative sequence such that the coefficient
of pn

1 in each polynomial Ln(p1, . . . ,pn) is given by the coefficient
of tn in f (t) =

√
t/tanh

√
t .
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Hirzebruch Signature Theorem
The L − Genus

The L− genus
The L− genus, L[Mn] is defined as

(i) If n 6= 4k then L[Mn] = 0,
(ii) If n = 4k , then Ln[M4k ] =

〈
Ln(p1, . . . ,pn), [M4k ]

〉
∈ Q.

Carmen Rovi (University of Edinburgh) Surgery Theory Group 2011 22 / 35



univlogo.pdf

Hirzebruch Signature Theorem

Following the above definition, we can write several L-polynomials as,

L1(p1) = 1
3p1,

L2(p1,p2) = 1
45(7p2 − p2

1),

L3(p1,p2,p3) = 1
945(62p3 − 13p1p2 + 2p3),

... =
...
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Hirzebruch Signature Theorem

Definition
The Todd-genus is the genus which has multiplicative seguences
corresponding to the power series f (t) = t

1−e−t .

Definition
The â genus is the genus which has multiplicative seguences

corresponding to the power series f (t) =
1
2

√
x

sinh
√

x .
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Hirzebruch Signature Theorem
Properties of Genera

Any genus K gives rise to a ring homomorphism

Ω∗ −→ Q
M 7−→ K [M] ∈ Q.

Moreover this also provides an algebra homomorphism from Ω∗ ⊗Q to
Q.

If M and N are smooth, compact oriented manifolds, then

K [M × N] = K [M]K [N] and K [M + N] = K [M] + K [N].

Carmen Rovi (University of Edinburgh) Surgery Theory Group 2011 25 / 35
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Hirzebruch Signature Theorem
Defining the Signature

The Signature
Consider a compact, oriented manifold M of dimension n. The
signature σ(M) is defined as follows,

(i) If n 6= 4k , then σ(M) = 0,
(ii) If n = 4k , then σ(M) is the signature of the intersection form

σ(M) = σ(H2k (M;R), λ)

Carmen Rovi (University of Edinburgh) Surgery Theory Group 2011 26 / 35
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Defining the Signature

The Signature
Consider a compact, oriented manifold M of dimension n. The
signature σ(M) is defined as follows,

(i) If n 6= 4k , then σ(M) = 0,
(ii) If n = 4k , then σ(M) is the signature of the intersection form

σ(M) = σ(H2k (M;R), λ)

...but what is an intersection form?
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Hirzebruch Signature Theorem
Symmetric forms

A symmetric form (K , λ) over R is a finite-dimensional real vector
space K together with a bilinear pairing

λ : K × K −→ R
(x , y) 7−→ λ(x , y)

The intersection form of a closed oriented 4k -dimensional manifold
M4k is the nonsingular symmetric form over R, (H2k (M;R), λ) with

λ : H2k (M;R) × H2k (M;R) −→ R
( x , y ) 7−→ λ(x , y) = 〈x ∪ y , [M]〉

Carmen Rovi (University of Edinburgh) Surgery Theory Group 2011 28 / 35
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Hirzebruch Signature Theorem
Defining the Signature

Consider a compact, oriented manifold M of dimension n. The
signature σ(M) is defined as follows,

(i) If n 6= 4k , then σ(M) = 0
(ii) If n = 4k , then σ(M) is the signature of the intersection form

σ(M) = σ(H2k (M;R), λ)

Choose an appropriate basis a1, . . . ,ar for H2r (M4k ;Q) so that the
matrix with entries

〈
ai ∪ aj , [M]

〉
is diagonal,

then σ(M) can be found by subtracting the number of negative
entries from the number of positive entries.

Carmen Rovi (University of Edinburgh) Surgery Theory Group 2011 29 / 35



univlogo.pdf

Hirzebruch Signature Theorem
Properties of the Signature

Properties of the Signature
The signature satisfies the following properties,

(i) σ(M + N) = σ(M) + σ(N),
(ii) σ(M × N) = σ(M)σ(N),

(iii) If M is an (oriented) boundary, this implies that σ(M) = 0.
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Hirzebruch Signature Theorem
Properties of the Signature

Let M and N be two closed, oriented, cobordant 4k -dimensional
manifolds and W be an oriented cobordism between them. Then the
signature is an oriented cobordism invariant, where,

σ(M) = σ(N).

The signature defines homomorphisms on the 4k -dimensional
oriented cobordism groups,

σ : Ω4k −→ Z
[M] 7−→ σ(M).

The signature also induces an algebra homomorphism Ω∗ ⊗Q to Q.

Carmen Rovi (University of Edinburgh) Surgery Theory Group 2011 31 / 35
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Hirzebruch Signature Theorem
The Signature Theorem

Recall the power series,

f (t) =
√

t/tanh
√

t

= 1 + 1
3 t − 1

45 t2 + 1
945 t3 − · · ·+ (−1)k−122kBk tk/(2k)! + . . .

where Bk is the k -th Bernoulli number.

Let Lk (p1, . . . ,pk ) be the multiplicative sequence of polynomials
belonging to this power series.

The Signature Theorem

The signature is equal to the L-genus L[M4k ] =
〈
Lk (p1, . . . ,pk ), [M4k ]

〉
,

σ(M4k ) = L[M4k ].
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Hirzebruch Signature Theorem
The Signature Theorem

The Signature Theorem

The signature is equal to the L-genus L[M4k ] =
〈
Lk (p1, . . . ,pk ), [M4k ]

〉
,

σ(M4k ) = L[M4k ].

Key idea for the proof:

M 7→ L(M) and M 7→ σ(M) give rise to algebra homomorphisms
Ω∗ ⊗Q→ Q,
We only need to check that it holds on generators of Ω∗ ⊗Q.

σ(CP2k ) = L[CP2k ]. (1)
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Exercices

Determine the signature of CPn × CPn for any n ∈ N

Show that σ(M#N) = σ(M)#σ(N)

Determine whether the 8 manifolds CP2 × CP2 and CP4 are
cobordant.

Show that CPn × CPm and CPn+m are linearly independent elements
of the corresponding oriented cobordism group, when n and m are
even.
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Thank you for listening!
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