LECTURE 8: SIMPLE HOMOTOPY EQUIVALENCES, WHITEHEAD TORSION 3/10/11

We saw in Chris Palmer's lecture on the h-cobordism theorem that by sliding, creating and cancelling handles we can eventually make all the boundary maps du: Ch -> Ch-1 diagonal with ±1 down the diagonal, then by reorienting the handler as necessary we can charge the - 1 diagonal entries to the probability put () 3009

Sliding handles has the effect of changing basis from his to he matrix that is zero everywhere except the i, the entry which is I Creating cancelling handle pairs has the effect of adding a raw and column to the matrix, a I in the bottom right entry and zeroes elsewhere, we call this stabilisation by the identity: the now show any forish of the thing (oc.) is a product of

Cancelling such a handle pair has the opposite effect; destabilization. In the case of an h-cobordism, $\pi_i(M) = \pi_i(M) = \pi_i(M') = 0$ so the incidence numbers < har hip> = ZITI(W) = Z. In general the fundamental group will not be trivial, so de will have entries in Zπ.(W), and we will have to keep track of the fundamental group. ARA'B' is a product of elementary matricer.

§1: The Whitehead group & the s-cobordism theorem:

Let R be a ring with identity: let GL(n,R) denote the general linear group of invertible nxn matrices. Let inchange of tonor a GL(R): = ling GL(n.R)9] = [A] (: : rehame)

be the direct limit given by stabilising by the identity

plack addition A) KEH AA P moluces the same open

Let $E_n(R) \leq GL(n,R)$ be the normal subgroup generated by the elementary matrices $\{I_n + rE_i\}$. Let $E(R) := \lim_{n \to \infty} E_n(R)$ be the ing creating and canaling handles we can eventually make a Lemma: E(R) = [GL(R), GL(R)]. -) . G your Mobile Proof: (=): Any elementary matrix I + + tij can be written as the commutators [I+Eik, I+rEkj] an about pris (=): We show that any commutator [A,B] can be written explicitly as a product of elementary matrices: [A,B] = ABA'B' is in GL(n,R) for some sufficiently large n. I is daily who is (ABA+B-1,000) evaluates GL(2m,R) is that inter or the street of the services of We now show any matrix of the form (CO) is a product of elementary matrios: $\begin{pmatrix} 0 & C_{-1} \end{pmatrix} = \begin{pmatrix} 0 & I \end{pmatrix} \begin{pmatrix} -C_{-1} & I \end{pmatrix} \begin{pmatrix} 0 & I \end{pmatrix} \begin{pmatrix} I & O & I \end{pmatrix} \begin{pmatrix} I & I \end{pmatrix} \begin{pmatrix} 0 & I \end{pmatrix} \begin{pmatrix} I & I \end{pmatrix} \end{pmatrix} \begin{pmatrix} I & I \end{pmatrix} \begin{pmatrix} I & I \end{pmatrix} \begin{pmatrix} I & I \end{pmatrix} \end{pmatrix} \begin{pmatrix} I$ so ABA-B-1 is a product of elementary matricer. Def": Let $K_i(R) := GL(R)$, the abelianisation of the general linear graptoned (SIN) TO ECR) Remarks: i) [A] = [B] \(\) \(\) \(\) \(\) AB is a product of elementaries. ii) The group operation for $k_i(R)$ is matrix multiplication, however block addition $A \cdot B := (A \circ)$ induces the same group

operation because (ABO) = (AO)(BO)and we already saw by (*) that $(RO) = O \in k_i(R)$. iii) The question whether k. (R) is trivial or not is the same as the question "Does a Euclidean algorithm exist to diagonalise invertible matricer over R?" 0-1 = 362 + 236 Example: Let R= Z. Every integral invertible matrix can be diagonalized to yield a matrix with diagonal entries in ±1, then wing the fact that $\begin{pmatrix} -1 & 0 \\ 0 & (-1)^{-1} \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ minute signs except possibly the top left entry. Thus k.(Z) = Z2. With the proof of the h-cobordism theorem we saw that by changing the orientation of handler we could make $\partial_{k} = \begin{pmatrix} \pm 1 & 0 \end{pmatrix}$ into the identity matrix. (So really the class in $\partial_{k} = \begin{pmatrix} \pm 1 & 0 \end{pmatrix}$ $\widehat{K}_{i}(\mathbb{Z}) := \widehat{K}_{i}(\mathbb{Z})$ In general for non-simply connected h-cobordisms we had $C_{k} = \mathbb{Z}_{\pi_{i}}(M)\{k - \text{handler}\}$ with $H_{k}(C_{*}) = H_{k}(W, M; \mathbb{Z}) = 0$, and by changing the orientation of a handle and the choice of lift to The universal cover we can make an all to make where = (io(d+s)) is here of the matrix io(d+s) is the into the identity matrix. Thus we are only concerned with the classes of matrices in $K_1(Z_{II}) = :Wh(TI)$ which we call the Whitehead This is well-defined: · Independenting to doi: (Int is a choice for is thou choice for is thou c(i(i))) = 0 since i.(ii) is a Examples: i) By the previous example, we see that Wh(Z) = 0. (ii) Wh (TI (M)) = O for M a surface (either orientable or non). iii) Wh(TI(M)) = 0 for Ma compact n-dinensional manifold

with universal cover $M=\mathbb{R}^m$. This is a CONJECTURE, verified in many cases. (The Whitehead group version of the Novikov conjecture.) Recall: A chain complex (C,dc) is chain contractible if it is chain homotopy equivalent to the zero chain complex, i.e I chain homotopy $S: C_X \rightarrow C_{X+1}$ between 0 and 1: dcs + sdc = 1 -0 "S9 now resistant Lemma: Let C_* be a chain complex of finitely generated projective R-modules. If $H_*(C_*) = 0$, then C is chain contractible. the frost: By induction on chain lough. enty. Thus k(Z) = Z2. Lemma: let C be a chain contractible chain complex with chain contractions, then

d+s:

C+

* odd

* even. is a chain isomorphism with inverse (1+52) (d+5). Now let $i: \mathcal{D}(x) \xrightarrow{\sim} \mathcal{D}(x)$ be a chain isomorphism sending bares to bases, then we define the Whitehead torsion of the chain complex C, denoted T(C+), by T(C*):= t(io(d+s)) where + (io(d+s)) is the class of the matrix io(d+s) in the into the identity nations. Thus we are only concequing boundaries of the Whitehead of matrices in Ki(THI) =: Wh(TI) which we call the Whitehead This is well-defined: . Independence of choice of i: let i' be another choice for i, then $\tau(i \circ (i')^{-i}) = 0$ since $i \circ (i')^{-i}$ is a permutation matrix => \(\tau(i)(des)) = \tau(i)(i')(i')(des)) ((1+b)oti) Tit ("(i)oi) = M a surface (either orientable or non)

iii) WILL(A+D) 0:07 for Ma ampact in-dinewished manifold

• Independence of choice of chain contractions is given by lemma 8.9 ii) of Andrew's book.

Defn: i) The torsion of a chain equivalence $f: C \longrightarrow D$ of finite barred finitely generated free R-module chain complexes is $\tau(f) := \tau(\mathcal{E}(f))$

where C(f) is the algebraic mapping come of f, defined as

ii) The torsion of a homotopy equivalence $f: X \xrightarrow{\sim} Y$ of fixite CW complexes is the torsion of the induced chair equivalence $f: C(\tilde{X}) \longrightarrow C(\tilde{Y})$

ii. $\tau(f) = \tau(\zeta(f)) = \tau(\zeta_{*}(X, \overline{Y})) \in Wh(\pi_{i}(X)).$ iii) We say a honotopy equivalence $f: X \xrightarrow{\sim} Y$ is simple of $\tau(f) = 0 \in Wh(\pi_{i}(X)).$

1 Now returning to considering th-cobordisms we have it to trog

Lemma: All Jk in $C_*(\widetilde{W},\widetilde{M})$ can be diagonalised (with entries in $\pm \pi_*(M)$) $\iff \tau(M \hookrightarrow W) = 0$.

Defn: An s-cobordism (s for simple) is an h-cobordism (W; M, M') such that $\tau(M \hookrightarrow W) = 0 \in Wh(\pi_{\bullet}(M))$.

so if $\tau(M \cup sW) = 0$, we can diagonalise all the Ju's, and if din M>S we can apply the Whitney trick to cancel all handles geometrically. Thus

S-Cobordism theoren: Let Wint be an s-cobordism between Mand Nin, n.>5.

Then Wis diffeomorphic to MxI restricting to the identity MCW-> Mx609,

in particular M=N.

For mys all Whitehead torsions can be realised:

Propⁿ: let $m \ge 5$, M a closed m-dimensional manifold with $\pi_i(M) = \pi$. For all $\tau \in Wh(\pi)$, there exists an h-cobordism (W; M, M') such that $\tau(M \hookrightarrow W) = \tau \in Wh(\pi)$.

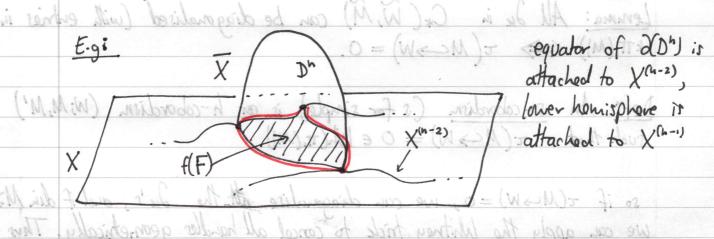
Proof: 1c-feb Ranickio 8.22. piggan sunderlo est à (D) mento

In the following section I will attempt to explain geometrically what it means to be a simple homotopy equivalence.

did §2: Simple homotopy equivalences: and o to wind at (i)

In all that follows we will talk about (W complexes, but by thickening cells we might as well be talking about handle decompositions:

Defⁿ: A finite CW complex X is an elementary expansion of a CW complex X if $X = XU_fD^n$ where D^n is attached to X via part of its boundary $f: F:=D^{n-1}\subset \partial D^n\longrightarrow X^{(n-1)}$ such that $f(\partial D^{n-1})\subset X^{(n-2)}$



If X is an elementary expansion of X we write XPX or XSX.

If X=X°P...e/Xn=Y then we write XPY or YSX. For a

Mixture X=X°PX, S. PXn=Y we write XPY and we vary that

X and Y are: simple homotopy equivalent. Wlog if X/> Y we can always do all expansions first followed by all The carractors so XXZXY to some miles to book in TUXXY)=0,05KEN. THOS. 3 X X XXX YOL Y OU Defr: If (X14) is a finite CW pair and YC> X a homotopy equivalence, then define $\tau(X,Y) := \tau(C_*(\widehat{X},\widehat{Y})) = \tau(\mathcal{C}(\widehat{Y} \hookrightarrow \widehat{X})) \in Wh(\pi_1(Y)).$ Proof: Idea: Any i-coll in X-Y, isn can be traded for an (i+2) Theorem: X/>Y rel Y &> +(XIY)=0. Proof: (=>): It is sufficient to show that a is invariant under elementary expansions rel Y. So suppose X 9 X' = Xue"ue" en an n-cell, en an (n-1)-cell, where en = 2Dn-F. Choose orientations so that 2[en] = [en-i] +c some c e (n-1(x, 9). Since YC=>X C*(X,9)=0 chain carractible by earlier Comma We show we can extend a chain contractions for C+(X, Y) to a chair carraction for C*(X', 9) without changing the Whitehoad torsidn. Set $s([e^n]) = 0$, $s([e^{n-1}]) = [e^n] - sc$. ie $\cdots \stackrel{>}{=} C_n \stackrel{>}{=} C_{n-1} \stackrel{>}{=} \cdots$ $\langle e^n \rangle \stackrel{>}{=} \langle e^{n-1} \rangle$ This is a chain contraction. For n even, the new of the matrix is mother all O(1 - 1) of O(1Either can be obtained from (dts o) via elem row operations > I unchanged.

	To prove the converse we we the following lemma: 900 Y box
by all	Wlog if X > I we an always do all expansions first followed
	Whitehood cell-trading lemma: Let (X,Y) be a finite CW pair with
	The(X,Y)=0, 05ken. Then IX, X > X rel Y such that
equivalor	X-Y has no cells of dimension & n. (Y)
	then define T(X,Y):= T(C,(X,Y)) = T(X(Yin)) & W
	Proof: Idea: Any i-cell in X-Y, ien can be traded for an (i+2).
	cell in X-Y where X et Xuleitizuleitz Je X
	Let e' be an i-cell in X-Y, i'm. Since Ti(X,Y) =0, e' is
"90	homotopic to an i-cellin Y: No morning motores
	e" on n-coll, e" a (n-1-coll, where e" = 30"-F. C
	Since Years Course chairmentally by earlier (
(40)	Di-D = 0 entre (Y ()) et = ["976 /)
Mura	Since Year CyCXITE chair outractible by earlier (
of (let P: (D', S'') x I -> (X, Y) be This honotopy - Consider This
1000	as a map from Dit = 2D1+2 -> X as we have in an elementar
	expansion $X' = X \cup \{e^{i+1}\} \cup \{e^{i+2}\}$:
	12-19 = 1-49 Dz 0=(1-91)z 192
	JOCD. JAT C
	V'
	/ (// e'
	(0) - (-0)
- 11 Y	This can also be viewed as an elementary expansion of X where $X' = X \cup \{e^i\} \cup \{C\}$, for C the $(i-1)$ -cell $C = \partial(D^{i+2}) \setminus F$. Now collapse
	X'= X v fe' f v f C for C the (i-1)-cell C= 2(D1+2) \t. Now collapse
	C to Foy and X = X'URY where G: CuY ->Y is the elementary
	allapse. We have this traded feit in X-7 for feitig in X-Y.
	1 + 1

of via clow row operations

0.6

Either can be obtained from (345) = t unchoraged.

Example: Let X = D2 with the following cell decomposition: y (///) {e'} (et Y=D'=>202 be one of the I-cells and fe'? The other. We trade feit for an fe3t. Y (1) Partie 2-cell x de 33 is interior Now collapse C to identify feit with the 1-cell First in Y. 2-cell of X is stretched over C. We now return to the proof of the theorem: YC=>X with T(X1Y)=0 => X/3Y Proof consided: () Sketch: Since X = Y, The (X17)=0 +k. Since X, Y finite we may apply the cell-trading lemma to trade all cells in X-Y up above dim(Y), and sufficiently high to be concentrated in dimensions K& K+1 & K+2 say, where k = differ(x). So XMX' rel Y where X'= Yufer ofert 0 -> CK+1(X)Y) -> CK(X,Y) ->0 $C_{*}(\hat{x}_{i}\hat{Y})$. Since $\tau(X,Y) = \tau(X',Y)$ by the (=>) direction of the proof and

T(X,Y)=0, we may write 2 as a product of elementary matricer

after stabilisation. This gives us a recipe for how to obtain Y for X'

via elementary expansions and contactions (all in X'-Y), so this is nel Y. Corollary: Two finite dimensional CW complexes have the same simple honotopy type > they have the PL homeomorphic (closed) regular neighbourhoods in some Euclidean space. trade fet for an feet with Proof: (c-f. Handbook of K-theory vol 1, p. 593) Idea: - Wlog X > X' is inclusion of one end of a mapping cylinder. · Take regular neighbourhoods in R, n > 6, of the mapping cylinder to yield a proper h-cobordism between regular neighbourhoods of X and X! The fact that XNX' means this is as S-cobording so applying the 5-cobordion theoren we get that The regular neighbourhoods are diffeomorphic. Systems with below & Coll & X is stretched over C We now repring to the proof of the thousen: Yes will dxi1)=0 => XISY Troof comingod: (=) Sheetel: Since X ay, The (X+7)=0 4kr Since X,Y firste we may apply the cell-teading lemma to trade all colls in X-7 up above din(4), and sufficiently high to be consertated in dinguions Kle Kin & Mes roup, where he = dip(X) So X > X rol Y where X = Xuletulctula come and C+02+ (PX) D= C+(PX) +30+0 Since T(X,Y) = T(X',Y) by the (=>) direction of the proof and t(X,Y)=0, we may write of as a product of olonation matrices after stabilisation. This giver us a recipe for how to obtain Y for X'