Lecture 2 - Orientations, Poincaré Duality, local coefficients and the handle chain complex: Exercises

Orientations

1. Let M be a CW complex. Recall we define the orientation character $\omega_{1}: \pi_{1}(M) \rightarrow \mathbb{Z}_{2}$ as follows:
Let $\gamma: S^{1} \rightarrow M$ represent a class in $\pi_{1}(M)$, then consider the lift to the orientation double cover $M_{\mathbb{Z}_{2}}$:

we define

$$
\omega(\gamma)=\left\{\begin{array}{cc}
+1, & \bar{\gamma} \text { exists } \\
-1, & \text { otherwise }
\end{array}\right.
$$

(a) Prove that ω_{1} is trivial if and only if $T M^{(1)}$ is trivial.
(b) Formulate a definition of ω_{k} given $\omega_{1}, \ldots, \omega_{k-1}$ are all trivial such that ω_{k} is trivial if and only if any trivialisation of $T M^{(k-1)}$ can be extended to a trivialisation of $T M^{(k)}$.
2. Perhaps a question about \mathbb{C}-orientations or \mathbb{H}-orientations?

Poincaré Duality

3. For a simplicial complex X, define the front p-face of an n-simplex $\sigma=\left[v_{0} \ldots v_{n}\right]$ as ${ }_{p} \sigma:=\left[v_{0} \ldots v_{p}\right]$ and the back q-face as $\sigma_{q}:=\left[v_{n-q} \ldots v_{n}\right]$.
The Alexander-Whitney diagonal approximation is given by

$$
\begin{aligned}
\tau: C_{n}(X) & \rightarrow(C(X) \otimes C(X))_{n} \\
\sigma & \mapsto \sum_{p+q=n} p \sigma \otimes \sigma_{q}
\end{aligned}
$$

and the partial evaluation map is defined as

$$
\begin{aligned}
E: C^{r}(X) \otimes C_{p}(X) \otimes C_{q}(X) & \rightarrow C_{q}(X) \\
a \otimes z \otimes w & \mapsto\left\{\begin{array}{cc}
a(w) \otimes z, & r=q \\
0, & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Recall, we define the cap product on the chain level by

$$
a \cap z:=E(a \otimes \tau(z))
$$

and this descends to a well defined product on (co)homology.
(a) Consider S^{1} as a simplicial complex with three 0 -simplices and three 1-simplices. Compute explicitly, using the Alexander-Whitney diagonal approximation, the map

$$
-\cap\left[S^{1}\right]: C^{1-*}\left(S^{1}\right) \rightarrow C_{*}\left(S^{1}\right)
$$

thus verifying that S^{1} has Poincaré duality.
(b) A 2nd example?
4. Let M be
(a) S^{1}
(b) $S^{1} \times S^{1}$
(c) $\mathbb{R} P^{2}$
(d) K the Klein bottle

Consider all possible representations $\omega: \pi_{1}(M) \rightarrow \mathbb{Z}_{2}$. Compute

> - $\left.H_{\mathbb{Z}, \omega}^{*}(\widetilde{M}):=H^{*}\left(M ; \mathbb{Z} \pi_{1}(M)_{\omega}\right)\right)=H_{*}\left(\operatorname{Hom}_{\mathbb{Z} \pi_{1}(M)}\left(C(\widetilde{M}), \mathbb{Z} \pi_{1}(M)_{\omega}\right)\right)$.
> - $\left.H_{*}^{\mathbb{Z}, \omega}(\widetilde{M}):=H_{*}\left(M ; \mathbb{Z} \pi_{1}(M)_{\omega}\right)\right)=H_{*}\left(C(\widetilde{M}) \otimes_{\mathbb{Z} \pi_{1}(M)} \mathbb{Z} \pi_{1}(M)_{\omega}\right)$.

For what ω do we get Poincaré Duality

$$
[M] \cap-:\left\{\begin{array}{c}
H_{\mathbb{Z}, \omega}^{k}(\widetilde{M}) \rightarrow H_{\operatorname{dim} M-k}(\widetilde{M}) \\
H^{k}(\widetilde{M}) \rightarrow H_{\operatorname{dim} M-k}^{\mathbb{Z}, \omega}(\widetilde{M})
\end{array} ?\right.
$$

For S^{1}, why is the correct involution for Poincaré Duality

$$
\Sigma a_{j} t^{j} \mapsto \Sigma a_{j} \omega(t) t^{-j}
$$

and not

$$
\Sigma a_{j} t^{j} \mapsto \Sigma a_{j} \omega(t) t^{j} ?
$$

Local coefficients

5. Prove that the two different points of view for local coefficients are equivalent.
6. Let A be a $\mathbb{Z} \pi_{1}(M)$-module. Construct a cover \widetilde{M} such that the (co)homology of M with local coefficients in A is equal to the untwisted (co)homology of \tilde{M}.

The handle chain complex

7. Let M_{1} be obtained from M_{0} by $b_{0} k$-surgeries with trace cobordism ($W_{0} ; M_{0}, M_{1}$). Let M_{2} be obtained from M_{1} by $b_{1}(k+1)$-surgeries with trace cobordism ($W_{1} ; M_{1}, M_{2}$). Let ($W ; M_{0}, M_{2}$) be $W_{1} \cup W_{2}$.
Consider the relative handle chain complex

$$
\begin{array}{cc}
C\left(W ; M_{0}\right)_{k+1} \xrightarrow{\partial_{k+1}} \\
C\left(\begin{array}{c}
W \\
W_{k+1} \\
\left(W_{1} ; M_{1}\right)_{k}
\end{array}\right)=\mathbb{Z}^{b_{1}} & H_{k}\left(W_{0} ; M_{0}\right)=\mathbb{Z}^{b_{0}}
\end{array}
$$

Identify ∂_{k+1} with the connecting map for the homology long exact sequence of the triple $W \supset W_{0} \supset M_{0}$:

$$
\cdots \longrightarrow H_{k+1}\left(W ; W_{0}\right) \xrightarrow{\partial_{k+1}} H_{k}\left(W_{0} ; M_{0}\right) \longrightarrow H_{k}\left(W ; M_{0}\right) \longrightarrow \cdots
$$

8. Let M be the 3 -manifold with boundary obtained by taking a regular neighbourhood of $S^{1} \vee S^{2}$ in \mathbb{R}^{3} considered as a cobordism from the empty set to $\partial M=\left(S^{1} \times S^{1}\right) \sqcup S^{2}$. Give M a handle decomposition with one 0 -, one 1- and one 2-handle. Compute the chain complex $C_{*}\left(M ; \mathbb{Z}\left[t, t^{-1}\right]\right)$ and its homology.
