Lecture 3 - Vector Bundles and Surgery: Exercises

Fibre Bundles

1. Using appropriate fibration sequences, prove that $\pi_{i}(U(n)) \cong \pi_{i}(U(n+1))$ for $i \leq 2 n+1$. Calculate the following:
(a) $\pi_{i}(S O(n))$ for $i=0,1,2$ and $n \geq 1$;
(b) $\pi_{3}(S O(n))$ for $n=1,2,3,4$ (you may assume $\pi_{4}\left(S^{3}\right)=\mathbb{Z}_{2}$);
(c) $\pi_{i}(U(n))$ for $i=1,2$ and $n \geq 1$.
2. (Part III - Fibre Bundles) Calculate $\left[O(2 n) / U(n), S^{n^{2}}\right]$.
3. (Part III - Fibre Bundles) For which n does there exist an embedding $\mathbb{R} P^{n} \times \mathbb{R} P^{n} \rightarrow \mathbb{R} P^{2 n}$ such that the induced map $H^{*}\left(\mathbb{R} P^{2 n} ; \mathbb{Z}_{2}\right) \cong H^{*}\left(\mathbb{R} P^{n} \times \mathbb{R} P^{n} ; \mathbb{Z}_{2}\right)$ is an isomorphism? Does there exist an immersion $\mathbb{R} P^{2} \times \mathbb{R} P^{2} \rightarrow \mathbb{R}^{5}$?
4. (Part III - Fibre Bundles) Let $G=O(n)$, find $H<G$ such that $G / H \cong \mathbb{R} P^{n-1}$. Show that for n odd

$$
H^{*}(B O(n-1) ; \mathbb{Q}) \cong H^{*}(B O(n) ; \mathbb{Q})
$$

Why does this fail for n even?

Characteristic Classes

5. Find characteristic classes that completely classify:
(a) Real vector bundles over S^{2};
(b) Complex vector bundles over S^{2};
(c) Real vector bundles over S^{4}.

Find 2 linearly independent real 4-plane bundles over S^{4}. Hence show that there are infinitely many vector bundles over S^{4} with Euler number 1.
6. Recall that $\operatorname{Spin}(n)$ is the universal cover of $S O(n)$ and that

$$
\operatorname{Spin}^{c}(n)=(\operatorname{Spin}(n) \times U(1)) /(A, \lambda) \sim(-A,-\lambda)
$$

For M a closed manifold show:
(a) M is orientable if and only if $w_{1}\left(\nu_{M}\right)=0$;
(b) M is spinnable if and only if $w_{1}\left(\nu_{M}\right)=w_{2}\left(\nu_{M}\right)=0$;
(c) M admits a Spin^{c}-structure if and only if $w_{1}\left(\nu_{M}\right)=0$ and $w_{2}\left(\nu_{M}\right)$ is the $\bmod 2$ reduction of an integral cohomology class.

You may use the fact that $\operatorname{Spin}(n)$ and $\operatorname{Spin}^{c}(n)$ are topological groups.
7. For a closed 3-manifold M, show that $w_{1}^{2}(M)=w_{2}(M)$.
8. (Diarmuid Crowley - Topology of Manifolds Summer School) For a closed $4 k$-dimensional manifold M, let $\tilde{\nu}: M \rightarrow B$ be a normal $(2 k-1)$-smoothing. Show:
(a) If $\partial M \simeq S^{3}$ then $T M$ is trivial;
(b) If $\partial M=\emptyset$ and $c: M \rightarrow S^{4 k}$ is the map collapsing the exterior of a small disk in M to a point then there is a vector bundle ξ over $S^{4 k}$ such that $c^{*} \xi \cong T M$.
(c) If J is the ' J-homomorphism' and $S \xi$ is the suspension of ξ then $J(S \xi)=0 \in \pi_{4 k-1}^{s}$.

Vector Bundles

9. For $h^{*}(\cdot)$ a multiplicative cohomology theory define the Thom class of a vector bundle ξ over M. Define the Euler class $e_{h}(\xi)$ of ξ and show that ξ admits a nowhere zero section if and only if $e_{h}(\xi)$ vanishes.
10. Let $f: S^{n-1} \rightarrow S O(k)$ be a clutching function for the bundle E_{f} over S^{n}. For appropriate r and s, construct a class $\gamma_{f} \in \pi_{r}\left(S^{s}\right)$ that vanishes if and only if E_{f} admits a nowhere 0 section.
For $k>n$ show that $E_{f}=E^{\prime} \oplus \epsilon$ (you may use the fact that $\pi_{r}\left(S^{s}\right)=0$ for $\left.r<s\right)$.
Show that

$$
\pi_{r}(S O(s)) \rightarrow \pi_{r}(S O(s+1))
$$

is sujective for $r<s$.
11. (a) Calculate the total Stiefel-Whitney class of $\mathbb{R} P^{n}$.
(b) Calculate the total Chern class of $\mathbb{C} P^{n}$.
(c) For any positive integer d, let

$$
S_{d}=\left\{\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \in \mathbb{C} P^{3} \mid \sum z_{i}^{d}=0\right\} .
$$

Calculate the Chern classes of S_{d} in terms of (the pullback of) the generator of $H^{*}\left(\mathbb{C} P^{3} ; \mathbb{Z}\right)=$ $\mathbb{Z}\langle x\rangle /\left(x^{4}=0\right)$.
12. We should be able to cook up an exercise involving using the signature theorem for 4-manifolds: $\sigma(M)=\frac{1}{3}\left\langle p_{1}(X),[X]\right\rangle$.
13. For $k \geq 2$, determine the number of distinct S^{k}-bundles over S^{2}.

For $m \geq 4$, let $S^{1} \hookrightarrow M^{m}$ be a nullhomotopic embedding. Show that the surgery on M with respect to this embedding has effect $M^{\prime}=M \# N$, where N is an m-dimensional manifold to be determined. When M is spin, show that M^{\prime} is not uniquely determined.
Show that M^{\prime} is uniquely determined for M not spin (difficult!).

Knot Theory

14. Let $E_{k} \rightarrow S^{2}$ be the complex plane bundle with euler number k. Explain how to obtain the sphere-bundle $S\left(E_{k}\right)$ via surgery on S^{3}.
Show that S^{3} is the universal cover for $S\left(E_{k}\right)$ and describe the deck transformations.
15. (Diarmuid Crowley - Topology of Manifolds Summer School) Let W_{k} be the trace of the surgery on S^{3} with effect $S\left(E_{k}\right)$. Verify that by gluing D^{4} to the component of ∂W_{k} that is S^{3} we obtain a space homotopic to S^{2} and with intersection form $[\pm k]$.
16. Consider the Hopf link in S^{3} with 0 -framed components. Show directly that the two surgeries these define have combined effect S^{3}.
17. (Part III - Morse Theory, 2005) Suppose $\iota: S^{1} \times D^{1} \hookrightarrow T^{2}$ is an embedding such that $\iota\left(S^{1} \times\{0\}\right.$ is a (p, q)-curve i.e. represents the homology class $p a+q b$ where $a, b \in H_{1}\left(T^{2} ; \mathbb{Z}\right)$ are the two standard generators. Let M be the manifold obtained from T^{2} by surgery with respect to this embedding. Compute $H_{*}(M ; \mathbb{Z})$ for the case $p, q>0$. Deduce a necessary and sufficient condition on strictly positive integers p and q for a (p, q)-curve to exist. (You may assume that a closed, oriented, smooth real surface is diffeomorphic to a surface of genus g for some $g \geq 0$.)
18. Let K be an embedded $S^{1} \hookrightarrow S^{3}$ with a closed tubular neighbourhood $\nu K \cong S^{1} \times D^{2}$. A Dehn surgery on K is the process of removing $\operatorname{int}(\nu K)$ and gluing back a copy of $S^{1} \times D^{2}$ by any diffeomorphism

$$
\phi: S^{1} \times \partial D^{2} \rightarrow \partial \nu K
$$

of the boundary tori. Orienting K, let μ be a right-handed meridian and $\lambda \in H_{1}(\partial \nu K ; \mathbb{Z})$ be a 0 -framed copy of K pushed to the boundary of νK. A Lens space $L(p,-q)$ is defined to be the effect of Dehn surgery on the standard embedding $S^{1} \hookrightarrow S^{3}$ with ϕ such that

$$
\phi_{*}\left(\left[\partial D^{2}\right]\right)=p \mu+q \lambda .
$$

(a) Show $L(\pm 2,1) \simeq \mathbb{R} P^{3}, L(\pm 1,1)=L(p, 0)=S^{3}$.
(b) Prove the 'slam dunk' - that the combined effect of the two surgeries on the Hopf link in S^{3} with framings m and n on the respective components is the Lens space $L(1-m n, n)$. Hence show that any Lens space is null-cobordant (Hint: it may help to prove that $L(p,-q)=L(-p, q)$ so that we can unambiguously consider the Dehn surgery generating the space as ' p / q-surgery' on the embedded S^{1}).
19. Should be a nice exercise about plumbing somewhere in here... How to interpret plumbing as surgery?

Here's a good exercise but I don't know where to put it:
(Part III - Algebraic Topology, 2005) Show that

- $K(G, n) \times K(H, n) \simeq K(G \times H, n)$.
- Describe a $K\left(\mathbb{Z}_{p}, 1\right)$. Calculate the rings $H^{*}\left(K\left(\mathbb{Z}_{p} ; \mathbb{Z}_{p}\right)\right.$ and $H^{*}\left(K\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}, 1\right) ; \mathbb{Z}_{p}\right)$.
- Let M^{m} be a cell complex and X be the result of attaching a single $(n+1)$-cell and finitely many i-cells to M (for $i \geq n+2$). Show that $H^{n+1}\left(X ; \mathbb{Z}_{p}\right)=0$ or \mathbb{Z}_{p}.

Let G act on S^{n} for $n>1$ and $M=S^{n} / G$. By adding cells to kill $\pi_{i}(M)$ for $i \geq n$, show that $G \neq \mathbb{Z}_{p} \times \mathbb{Z}_{p}$. (You may assume homotopy groups of spheres are finitely generated.)

